Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise
نویسندگان
چکیده
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.
منابع مشابه
Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise
KEY POINTS Endurance trained athletes exhibit enhanced cardiovascular function compared to non-athletes, although it is considered that exercise training does not enhance lung structure and function. An increased pulmonary capillary blood volume at rest is associated with a higher V̇O2 max . In the present study, we compared the diffusion capacity, pulmonary capillary blood volume and diffusing ...
متن کاملEffect of lung inflation on pulmonary diffusing capacity at rest and exercise.
Steady state measurements of the diffusing capacity of the lung are made at operational lung volume, whereas measurements by the breath-holding method are customarily made at full inspiration. The effect of lung inflation on diffusing capacity must be taken into account before the steady state and breath-holding methods can be validly compared. At rest the single breath diffusing capacity of th...
متن کاملPulmonary membrane diffusing capacity and capillary blood volume measured during exercise from nitric oxide uptake.
STUDY OBJECTIVES To validate lung diffusing capacity for nitric oxide (DLNO) as an index of conductance of the alveolar-capillary membrane during exercise, we compared DLNO to lung diffusing capacity for carbon monoxide (DLCO) and pulmonary membrane diffusing capacity for carbon monoxide (DMCO), and compared pulmonary capillary blood volume (Vc) calculated by two methods. SETTING AND PARTICIP...
متن کاملAre there sex differences in the capillary blood volume and diffusing capacity response to exercise?
Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (DlCO) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower DlCO,...
متن کاملSplenectomy impairs diffusive oxygen transport in the lung of dogs.
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86...
متن کامل